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Abstract  Wavelet functions have been used as the activation function in 
feed forward neural networks. An abundance of R&D has been produced 
on wavelet neural network area. Some successful algorithms and applica-
tions in wavelet neural network have been developed and reported in the 
literature. However, most of the aforementioned reports impose many res-
trictions in the classical back propagation algorithm, such as low dimen-
sionality, tensor product of wavelets, parameters initialization, and, in ge-
neral, the output is one dimensional, etc. In order to remove some of these 
restrictions, a family of polynomial wavelets generated from powers of sig-
moid functions is presented. We described how a multidimensional wavelet 
neural networks based on these functions can be constructed, trained and 
applied in pattern recognition tasks. As examples of applications for the 
method proposed a framework for face verification is presented.

Keywords Artificial neural network, Human face verification, Image processing, 
Pattern recognition, Polynomial powers of Sigmoid (PPS), Wavelets.
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Introduction
Wavelet functions have been successfully used in many problems 

as the activation function of feed forward neural networks. There are 
claims that many biological fundamental properties can emerge from wa-
velet transformation in Marar (1997). An abundance of R&D has been pro-
duced on wavelet neural network area. Some successful algorithms and 
applications in wavelet neural network have been developed and repor-
ted in the literature Zhang and Benveniste (1992); Marar (1997); Oussar 
and Dreyfus (2000); Chen and Hewit (2000); Zhang and San (2004); Fan and 
Wang (2005); Zhang and Pu (2006); Chen et al. (2006); Avci (2007); Jiang et 
al. (2007); Misra et al. (2007).

However, most of the aforementioned reports impose many res-
trictions in the classical back propagation algorithm, such as low dimensio-
nality, tensor product of wavelets, parameters initialization, and, in gene-
ral, the output is one dimensional, etc.

In order to remove some of these restrictions, we develop a robust 
Three Layer PPS-Wavelet multi-dimensional strongly similar to classical 
Multilayer Perceptron. The great advantage of this new approach is that 
PPS-Wavelets others the possibility choice of the function that will be used 
in the hidden layer, without need to develop a new learning algorithm. 
This is a very interesting property for the design of new wavelet neural ne-
tworks architectures. This paper is organized as follows. Section "Function 
approximation" covers basic theoretical aspects in function approximation. 
Section "Wavelet functions" introduces the wavelet sigmoidal function. 
Section "Polynomial powers of Sigmoid" presents the framework used in 
this research. Section "Human face verification" deals with application of 
face verification problem. 

Function approximation

Multilayer perceptron networks (MLP) have been intensely studied 
as efficient tools for arbitrary function approximation. Amongst the deve-
lopments achieved in the theory of function approximation using MLP, the 
work carried out by Hecht-Nielsen resulted in an improved version for the 
superposition theorem defined by Sprecher in Hecht-Nilsen (1987). Galant 
and White in 1988 showed that a feed forward network with one hidden 
layer of processing units that use flat cosines as the activation function 
correspond to a special case of Fourier networks that can approximate a 
Fourier series for a given function. Cybenko developed a rigorous demons-
tration that MLPs with only one hid-den layer of processing elements is 
sufficient to approximate any continuous function with support in a hyper-
cube by Cybenko (1989).

The theorem is directly applied to MLP. The sigmoid, radial basis 
and wavelets functions are a common choice for the network construction 
since it satisfies the conditions imposed in the theorem. The theorem of 
function approximation provides a mathematical basis that gives support 
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to the approximation of any continuous arbitrary function. Furthermore, 
it defi nes for the case of MLP that a network composed of only one hidden 
layer neurons is sufi cient to compute, in a given problem, a mapping from 
the input space to the output space, based on a set of training examples. 
However, with respect to training speed and ease of implementation, the 
theorem does not provide any insight about the solutions developed. The 
choice of activation functions and the learning algorithm defi nes which 
particular network is used. In any situation, the neurons operate as a set 
of functions that generate an arbitrary basis for function approximation 
which is defi ned based on the information extracted from the input-output 
pairs. For training a feed forward network, the back propagation algorithm 
is one of the most frequently employed in practical applications and can be 
seen as an optimization.

Wavelet functions

Two categories of wavelet functions, namely, orthogonal wavelets 
and wavelet frames (or non-orthogonal), were developed separately by di-
fi erent interests. An orthogonal basis is a family of wavelets that are line-
arly independent and mutually orthogonal, this eliminates the redundancy 
in the representation. However, orthogonal wavelets bases are difi cult to 
construct because the wavelet family must satisfy stringent criteria in Dau-
bechies (1992); Chui (1992). This way, for these difi culties, orthogonal wave-
lets is a serious draw-back for their application to function approximation 
and process modeling in Oussar and Dreyfus (2000). Conversely, wavelet 
frames are constructed by simple operations of translation and dilation of 
a single fi xed function called the mother wavelet, which must satisfy con-
ditions that are less stringent than orthogonality conditions.

Let φj a wavelet, the relation:

Where tj are the translations factors and dj is the dilation factors ∈R. 
The family of functions generated by ℧ can be defi ned as:

A family ℧ is said to be a frame of L2 (R) if there exist two constants 
c > 0 and   c < ∞ such that for any square integrable function f the following 
inequalities hold:

Where φj ∈ ℧, ∥ f ∥ denotes the norm of function f and <φj,f> the 
inner product of functions. Families of wavelet frames of L2 (R) are univer-
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sal approximators in Zhang and Benveniste (1992); Pati and Krishnaprasad 
(1993). In this work, we will show that wavelet frames allow practical im-
plementation of multidimensional wavelets. This is important when consi-
dering problems of large input and output dimension. For the modeling of 
multi-variable processes, such as, the artifi cial neural networks biologically 
plausible, multidimensional wavelets must be defi ned. In the present work, 
we use multidimensional wavelets constructed as linear combination of sig-
moid, denominated Polynomial Powers of Sigmoid Wavelet (PPS-wavelet).

Sigmoidal wavelet functions

In Funahashi (1989) is showed that:
Let s(x) a function diferent of the constant function, limited and mo-

notonically increase. For any 0 < α < ∞ the function created by the combi-
nation of sigmoid is described in Equation 1:

where g(x)  ∈ L1(R), i.e,

in particular, the sigmoid function satisfi es this property.
Using the property came from the Equation 1, in Pati and Krish-

naprasad (1993) boundary suggests the construction of wavelets based 
on addition and subtraction of translated sigmoidal, which denominates 
wavelets of sigmoid. In the same article show a process of construction of 
sigmoid wavelet by the substitution of the function s(x) by Υ(qx) in the 
Equation 1. So, the Equation 2 is the wavelet function created in Pati and 
Krishnaprasad (1993).

where r > 0. By terms of sigmoid function, the Equation 2, ψ(x) is 
given by: 

where q > 0 is a constant that control the curve of the sigmoid func-
tion and α and r ∈ R > 0.

Pati and Krishnaprasad demonstrated that the function ψ(x) sa-
tisfi es the admissibility condition for wavelets by Daubechies (1992); Chui 
(1992). The Fourier Transform of the function ψ(x) is given by the Equation 4:

Equation 3

Equation 2

Equation 1
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In particular, we accepted for analysis and practical applications 
the family of sigmoid wavelet generated by the parameters q = 2 and α = r, 

as example. So, the Equation 3 can be rewritten the following form: 
where m = α + r.
Following, partially, this research line, we present in the next sec-

tion a technique for construction of wavelets based on linear combination 
of sigmoid powers.

Polynomial powers of Sigmoid

The Polynomial Powers of Sigmoid (PPS) is a class of functions that 
have been used in recent years to solve a wide range of problems related to 
image and signal processing in Marar (1997). Let Υ∶ R → [0,1] be a sigmoid 
function defi ned by Υ(x)=  1/(1+e-x). The nth-power of the sigmoid func-
tion is a function 

Let θ be a set of all power of functions defi ned by (6):

An important aspect is that the power these functions, still keeps 
the form of the letter S. Looking the form created by the power functions 
of sigmoid, suppose that the nth power of the sigmoid function to be repre-
sented by the following form:

where an,a1,a2,…,an are some integer values. The extension of the 
sigmoid power can be viewed like lines of a Pascal's triangle. The set of 
function written by linear combination of polynomial powers of sigmoid is 
defi ned as PPS function. The degree of the PPS is given by the biggest power 
of the sigmoid terms.

 

Equation 4

Equation 5

Equation 6

Equation 7
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Polynomial wavelet family on PPS

The derivative of a function f(x) on x = x0  is defi ned by:

since the limits there is. So, if we do the computation of the Equation 8:

for a small value of Δx , showed have a good approximation for f'(x0). 
Naturally, Δx can be positive or negative. So, if is we use negative value for Δx, 
the expression will be:

This way, we can say that the arithmetic measure of the Equations 
8 and 9 will be a good approximation for f'(x0) too. Then, we can write the 
following Equation 10:

By convenience, we consider p = 2Δx and its substitution in the 
Equation 10. So, we have the Equation 11:

this point we computed an approximated value for the second de-
rivative of f(x) in x = x0. From the Equation 11, changing f(x) by f '(x), we 
obtain the Equation 12: 

reusing the Equation 11, we can write:

Equation 8

Equation 9

Equation 10

Equation 11

Equation 12
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and

using these results in the Equation12, we have an approximation of 
the second derivative of f(x) in x = x0 that is given by:

The approximation given by the Equation 13 is extremely adequate 
for the f(x) is a sigmoid function. Suppose that f(x) is a sigmoid, for example, 
Υ(x). So, the second derivative of Υ(x) is approximated by the Equation 14:

Due the fact of the sigmoid function to be continuous and differentia-
ble for any x ∈ R, we can say that the Equation 14 is true for any x0, then we 
can write the Equation 15, defi ned for all x ∈ R.

Comparison the Equations 15 and 5, we do there analysis for the 
approximation of the second derivative of sigmoid function. The fi rst for 
values of p ≥ 1 and the second for values of p < 1.

Case p ≥ 1:

It is clear that the function given by the sigmoid second derivative 
approximation, Equation 15, also will have the same form of the Pati and 
Krishnaprasad functions, except of a p2 constant that divides their amplitude. 
So, the following result is true: when p > 1 always there is a sigmoid wave-
let which integral of the admissibility condition by Daubechies (1992); Chui 
(1992) limited the same integral of the Equation 15. Therefore, the approxi-
mation of the second derivative of the sigmoid function is a wavelet too.

Case p<1:

In this case, we will analyze when p is going to zero, i.e.,

Equation 13

Equation 14

Equation 15

Equation 16
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this limit tends to the second derivative of the function is given on 
PPS terms by:

where we denominated φ2 (x) the fi rst wavelet the sigmoid function. 
The others derivatives, begin on the second, we considered true by derivative 
property by Fourier Transform in Marar (1997). The successive derivation 
process of sigmoid functions, allowed joining a family of wavelets polynomial 
functions. Among many applications for this family of PPS-wavelets, special 
one is that those functions can be used like activation functions in artifi cial 
neurons. The following results correspond to the the analytical functions for 
the elements φ3 (x)  and φ4 (x)  that are represented by:

Estimating the coeffi cients of PPS-wavelets

Considering  j the number of wavelets that are to be defi ned, the 
algorithm below calculates a matrix of integer values that estimates the 
coefi cients of the PPS-wavelets.

Step 1: Initialization

The initial values are considered only auxiliary variables. The ma-
trix of value associated with the process of wavelet construction is obtai-
ned from the second row.

Equation 17

Figure 1 PPS-wavelets examples, 

φ4 and φ5
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Step 2: Calculate the coeffi cient of the PPS of the highest degree

Step 3: Calculate the coeffi cients of the remaining terms of the polynomial

Step 4: Calculate the coeffi cients of the fi rst power variable

It is important to notice that steps 2 and 3 are cascaded by an inhe-
rent dependence on variable n. By proceeding in above way, a family of 
polynomial wavelets are generated.

PPS Wavelet neural network

Let us consider the canonical structure of the multidimensional 
PPS-wavelet neural network (PPS-WNN), as shown in Figure 2.

For the PPS-WNN in Figure 2, when a input pattern X=(x1,x2,…,xm)T 
is applied at the input of the network, the output of the ith neuron of output 
layer is represented as a function approximation problem, i.e., f∶ Rm→[0,1]n, 
given by:

where p  is number of hidden neurons,  Υ(⋅) is sigmoid function, 
φ(∙) is the PPS-wavelet, w(2) are weight between the hidden layer to the 
output layer,w(1)  are weights between the input to the hidden layer, d are 
dilation factors and t are translation factors of the PPS-wavelet, b(1) and b(2) 
are bias factors of the hidden layer and output layer, respectively.

The PPS-WNN contains PPS-wavelets as the activation function in 
the hidden layer (Figure 3) and sigmoid function as the activation function 
in the output layer (Figure 4).

Figure 2 PPS-wavelet neural net-

work Architectures
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The output of the jth  PPS-wavelet hidden neuron (Figure 3) is given by:

where

The output of the ith  output layer neuron (Figure 4) is given by:

where

The adaptive parameters of the PPS-WNN consist of all weights, 
bias, translations and dilation terms. The sole purpose of the training pha-
se is to determine the “optimum” setting of the weights, bias, translations 
and dilation terms so as to minimize the difference between the network 
output and the target output. This difference is referred to as training error 

Figure 3 The Hidden Neuron of PPS-Wavelet Neural Network Figure 4 The Output Neuron of PPS-Wavelet Neural Network



116Multidimensional  wavelet neural networks based on polynomial 
powers of sigmoid: a framework to image verifi cation

Echoes

DATJournal  v.1 n.2 2016

of the network. In the conventional back propagation algorithm, the error 
function is defi ned as:

where the n is the dimension of output space, s is the number of 
training input patterns.

The most popular and successful learning method for training the 
multilayer perceptrons is the back propagation algorithm. The algorithm 
employs an iterative gradient descendent method of minimization which 
minimizes the mean squared error (L2  norm) between the desired output 
(yi) and network output (oi). From Equations (18) and (19), we could deduce 
the partial derivatives of the error to each PPS-wavelet neural network pa-
rameter's, which is given by:

Partial equations of the output layer:

Partial equations of the hidden layer:

Equation 19

Equation 20

Equation 21

Equation 22

Equation 23
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Partial equations of the pps-wavelet parameters:

After computing all partial derivatives the network parameters are 
updated in the negative gradient direction. A learning constant γ defi nes 
the step length of the correction, r is the iteration and momentum factor is 
β. The corrections are given by:

Equation 24

Equation 25
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Algorithm to PPS wavelet neural network

In this section, the learning algorithm to the PPS-wavelet neural 
network is proposed by using the back propagation method. Where the ini-
tialization procedures, attribute random values on [0,1] to the parameters. 
However, improvements in the initialization process have been proposed by 
the selection of basic functions PPS-wavelet in de Queiroz and Marar (2007).

Human face verifi cation

Systems based on biometric characteristics, such as face, fi nger-
prints, geometry of the hands, iris pattern and others have been studied with 
attention. Face verifi cation is a very important of these techniques because 
through it nonintrusive systems can be created, which means that people 
can be computationally identifi ed without their knowledge. This way, com-
puters can be an effective tool to search for missing children, suspects or 
people wanted by the law. Mathematically speaking, human face verifi cation 
problem can be formulated as function approximation problems and from 
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the viewpoint of artificial neural networks these can be seen as the problem 
of searching for a mapping that establishes a relationship from an input to an 
output space through a process of network learning.

This study presents a system for detection and extraction of faces 
based on the approach presented in Lin and Fan (2001), which consists of fin-
ding isosceles triangles in an image, as the mouth and eyes form that geome-
tric figure when linked by lines. In order for these regions to be determined, 
the images must be converted into binary images, thus the vertices of the 
triangles must be found and a rectangle must be cut out around them so that 
their size can be brought to normal and the area can be fed into a second part 
of the system that will analyze whether or not it is a real face. Three different 
approaches are tested here: A weighing mask is used to score the region, pro-
posed by Lin and Fan (2001), a classical MLP back propagation (MLP-BP) and 
PPS-wavelet neural network, for the analysis to be performed.

Image treatment

First the image was read with the purpose of allocating a matrix in 
which each cell indicates the level of brightness of the correspondent pixel; 
then, it is converted into a binary matrix by means of a Threshold parameter 
T, because the objects of interest in our case are darker than the backgrou-
nd. This stage changes to 1 (white) a brightness level greater than T and to 
0 (black). In most of the cases, due to noise and distortion in the input ima-
ge, the result of the binary transformation can bring a partition image and 
isolated pixels. Morphologic operations - opening followed by closing - are 
applied with the purpose of solving or minimizing this problem by Gonzalez 
and Woods (2002). The Figure 8 shows the result of these operations.

Segmentation of potential face regions

After binarization the task is finding the center of three 4-connec-
ted components that meet the following characteristics:

 ¶  vertex of an isosceles triangle by Lin and Fan (2001);
 ¶  the Euclidean distance between the eyes must be 90-100 % the 

distance between the mouth and the central point between the 
eyes by Lin and Fan (2001);

 ¶  the triangle base is at the top of the image.

The last restriction does not allow finding upside down faces, 
but it significantly reduces the number of triangles in each image, thus 
reducing the processing time to the following stages. For example, the 
numbers of triangles found in Figure 5 (D), with this restriction 399 and 
without restriction 769.
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Figure 5 Image treatment after mor-

phologic operations

The opening and closing operations are vital, since it is impossible 
to determine the triangles without this image treatment. The processing 
mean time to find the results presented was 4 seconds; on the other hand, 
8 hours were insufficient in an attempt at finding the same results using a 
Pentium 4 with 2.4 Ghz processor in Figure 5 (C).

Normalization of potential facial regions

Once the potential face regions that we have selected in the pre-
vious section are allowed to have different sizes. All regions had to be 
normalized to the (60x60) pixels size by bi-cubic interpolation technique, 
because every potential regions needs to present the same amount of infor-



121Multidimensional  wavelet neural networks based on polynomial 
powers of sigmoid: a framework to image verifi cation

Echoes

DATJournal  v.1 n.2 2016

mation for comparison. So, normalization of a potential region can reduce 
the effects of variation in distance and location.

Face’s pattern recognition

The purpose of this stage is to decide whether a potential face 
region in an image (the region extracted in the fi rst part of the process) 
actually contains a face. To perform this verifi cation, two methods were 
applied: The weighting mask function, described by Lin and Fan (2001) and 
PPS-wavelet neural network.

The weighting mask function

The function Weighting Mask, according to the author, it is based 
on the following idea: If the normalized potential region is really contains 
a face, it should have high similarity to the mask that is formed by 10 bi-
nary training faces (Mask Generation). Every normalized potential facial 
region is applied into the weighting mask function that is used to compute 
the similarity between the normalized potential facial region and the mask. 
The computed value can be used in deciding whether a potential region 
contains a face or not.

Mask generation

The mask was created using 10 images. The fi rst fi ve are pictures 
of females and the others are pictures of males. All of them were manu-
ally segmented, binarized, normalized, morphologically treated (opening 
and closing) and then the sum of the correspondent cell of each image was 
stored in the 11th matrix. Finally, that matrix was binarized with another 
Threshold T, for which values lower than or equal to T were replaced by 0, 
and the others by 1. The result was improved with T=4. Whereas at lower 
values the areas of the eyes and mouth become too big, at higher values 
these areas almost disappear. In both cases, determining the triangles is 
considerably diffcult.

Weighting mask algorithm
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The algorithm used to decide whether a potential face (R) contains 
a real face is based on the idea that the binary image of a face is highly si-
milar to that of the mask.

A set experimental results demonstrates that the threshold values 
should be a set between face 3400 ≤ p ≥ 6800 by Marar et al. (2004).

PPS-wavelet neural network

In order to demonstrate the effi ciency of the proposed model. Two 
PPS-WNNs, one with the activation function φ2 (∙) and the other with φ5 (∙) 
in the hidden layer, were implemented to analyze when a potential face re-
gion really contains a face. However, the raw data face, (60 x 60) pixels, can-
not be used directly for the training the networks because the features are 
deep hidden. Therefore, we used the Principal Components Analysis (PCA) 
method to create a face space that represents all the faces using a small set of 
components Marar (1997). For this purpose we consider the fi rst 15 compo-
nents as the extracted features or face space. In that case study, 100 manually 
segmented faces (50 women and 50 men) and more 40 non-face random ima-
ges were used to network training.

Therefore, the PPS-WNNs and classical MLP-BP architectures with 
15 units in the input layer, with 16 PPS-wavelet neurons in the hidden layer 
and with 2 neurons in the output layer were designed and trained. Here, in 
the output layer, we represented face by the vector (1, 0) and non-face by 
the vector (0, 1). We used, as test, the same regions (R) applied to the pre-
vious method.

Face verifi cations results

Several tests were performed to determine an ideal threshold value 
for the conversion of the images into binary fi gures. In a scale from 0 (bla-
ck) to 1 (white), 0.38 was empirically determined as a good value to most of 
the images, but to darker images 0.22 was a better value. The test was done 
through the use of 100 images (50 male and 50 female) with two different 
threshold values from Department (2003). The results are shown in Table 1.

Conclusion

Neural networks and wavelet transform have been recently seen 
as attractive tools for developing effi cient solutions for many real world 
problems in function approximation. The combination of neural networks 
and wavelet transform gives rise to an interesting and powerful technique 
for function approximation referred to as wavenets. Function approxima-
tion is a very important task in environments where computation has to 
be based on extracting information from data samples in the real world 
processes. So, mathematical model is a very important tool to guarantee 
the development of the neural network area.

Table 1 Face verifi cation results with 2 

threshold values
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