Uma revisão do Complexo de Funções de Design de Robôs e HRI

Autores

  • Marcello Caldas Bressan CESAR School

DOI:

https://doi.org/10.29147/datjournal.v7i3.654

Palavras-chave:

Robô, Design, Revisão Sistemática, Complexo de Funções

Resumo

À medida que a tecnologia avança, os robôs estão cada vez mais presentes em nosso cotidiano e cultura. O campo da robótica está aberto a contribuições de vários campos, mas a definição do que é um “robô” pode ser enriquecida se analisada como um artefato de design. O objetivo desta pesquisa é promover uma definição mais amigável do design de robôs do que os pesquisadores da área de robótica querem dizer quando dizem que estão estudando ou desenvolvendo esses robôs. Foi realizada uma Revisão Sistemática da Literatura para identificar e analisar os artigos mais citados sobre o tema. Para entender a perspectiva do design, esses trabalhos foram então analisados à luz do Complexo de Funções, conforme proposto pelo Designer Victor Papanek. A revisão selecionou os 37 artigos mais citados, dentre mais de 25 mil resultados de busca em 5 portais científicos. O estudo alcançou uma visão genérica do robô à luz do Complexo de Funções.

Downloads

Não há dados estatísticos.

Biografia do Autor

Marcello Caldas Bressan, CESAR School

Head de Inovação na Stefanini, professor de Design Futures no Mestrado Profissional em Design na CESAR School, Head Inovação e Empreendedorismo no IPERID - Instituto de Pesquisas Estratégicas em Relações Internacionais e Diplomacia, Membro do Teach The Future e um dos futuristas fundadores da Futuring Today. Possui formação em fotografia pela Spéos – International Photography School. É graduado em Comunicação Social – UNIAESO Barros Melo, com especialização em Administração de Marketing pela UPE e Mestre em Design pelo CESAR e doutorando em design pela UFPE.

Referências

BARTNECK, C. et al. Measurement Instruments for the Anthropomorphism, Animacy, Likeability, Perceived Intelligence, and Perceived Safety of Robots. In: I. J. Social Robo¬tics, v. 1, n. 1, p. 71 – 81, 2009. DOI: https://doi.org/10.1007/s12369-008-0001-3

BRACCA, A. et al. Detecção Molecular de Histoplasma capsulatum var. capsulatum em amostras clínicas humanas. 2002. In: Journal of Clincal Microbiology.

BREAZEAL, C. Emotion and sociable humanoid robots. International Journal of Human Computer Studies, v. 59, n. 1-2, p. 119 – 155, 2003a.

BREAZEAL, C. Emotion and sociable humanoid robots. v. 59, n. 1-2, p. 119 – 155, 2003b. DOI: https://doi.org/10.1016/S1071-5819(03)00018-1

BREAZEAL, C. Toward sociable robots. Robotics and Autonomous Systems, Elsevier Scien¬ce B.V., Cambridge, n. 42, p. 167 – 175, 2003c. DOI: https://doi.org/10.1016/S0921-8890(02)00373-1

BREAZEAL, C. et al. Effects of nonverbal communication on efficiency and robustness in hu¬man-robot teamwork. In: 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. [S.l.: s.n.], 2005. p. 708 – 713. DOI: https://doi.org/10.1109/IROS.2005.1545011

BURGARD, W. et al. Experiences with an Interactive Museum Tour-Guide Robot. Artif. In¬tell., v. 114, n. 1-2, p. 3 – 55, 1999. DOI: https://doi.org/10.1016/S0004-3702(99)00070-3

CALINON, S.; GUENTER, F.; BILLARD, A. On Learning, Representing, and Generalizing a Task in a Humanoid Robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 37, n. 2, p. 286 – 298, 2007. DOI: https://doi.org/10.1109/TSMCB.2006.886952

CASPER, J.; MURPHY, R. R. Human-robot interactions during the robot-assisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), v. 33, n. 3, p. 367 – 385, 2003. DOI: https://doi.org/10.1109/TSMCB.2003.811794

CHITA-TEGMARK, M.; SCHEUTZ, M. Assistive Robots for the Social Management of Health: A Framework for Robot Design and Human-Robot Interaction Research. International Jour¬nal of Social Robotics, Springer Nature B.V., February 2020. DOI: https://doi.org/10.1007/s12369-020-00634-z

CROSS, E. S.; HORTENSIUS, R.; WYKOWSKA, A. From social brains to social robots: applying neurocognitive insights to human–robot interaction. Phil. Trans. R. Soc. B, The Royal So¬ciety Publishing, 2019. DOI: https://doi.org/10.1098/rstb.2018.0024

DAUTENHAHN, K. Socially intelligent robots: dimensions of human–robot interaction. Phi¬losophical Transactions of the Royal Society B: Biological Sciences, The Royal Society, v. 362, n. 1480, p. 679 – 704, 4 2007. DOI: https://doi.org/10.1098/rstb.2006.2004

DAUTENHAHN, K. et al. How may i serve you? A robot companion approaching a seated per¬son in a helping context. HRI’06, ACM, Salt Lake City, March 2006. DOI: https://doi.org/10.1145/1121241.1121272

D’ELIA, N. et al. Physical human-robot interaction of an active pelvis orthosis: toward ergo¬nomic assessment of wearable robots. Journal of NeuroEngineering and Rehabilitation, BioMed Central, 2017. DOI: https://doi.org/10.1186/s12984-017-0237-y

DISALVO, C. F. et al. All robots are not created equal: The design and perception of humanoid robot heads. DIS2002, ACM, London, 2002. DOI: https://doi.org/10.1145/778712.778756

FAVRO, T. Generation Robot: A Century of Science Fiction, Fact and Speculation. Delawa¬re: Skyhorse Publishing, 2018.

FEIX, T. et al. The GRASP Taxonomy of Human Grasp Types. IEEE Transactions on Human¬-Machine Systems, v. 46, n. 1, p. 66 – 77, 2016. DOI: https://doi.org/10.1109/THMS.2015.2470657

T. et al. iCub-HRI: A Software Framework for Complex Human-Robot Interaction Scenarios on the iCub Humanoid Robot. Frontiers in Robotics and AI, March 2018.

FONG, T.; NOURBAKHSH, I.; DAUTENHAHN, K. A survey of socially interactive robots. v. 42, n. 3-4, p. 143 – 166, 2003. DOI: https://doi.org/10.1016/S0921-8890(02)00372-X

FORLIZZI, J.; DISALVO, C. Service robots in the domestic environment. In: Proceeding of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction - HRI ’06. [s.n.], 2006. DOI: https://doi.org/10.1145/1121241.1121286

GOCKLEY, R.; FORLIZZI, J.; SIMMONS, R. Natural person-following behavior for social robots. In: 2007 2nd ACM/IEEE International Conference on Human-Robot Interaction (HRI). [S.l.: s.n.], 2007. p. 17 – 24. DOI: https://doi.org/10.1145/1228716.1228720

GOODRICH, M. A.; SCHULTZ, A. C. Human-robot interaction: A survey. Foundations and Trends in Human-Computer Interaction, v. 1, n. 3, p. 203 – 275, 2007. DOI: https://doi.org/10.1561/1100000005

GREEFF, J. de; BELPAEME, T. Why Robots Should Be Social: Enhancing Machine Learning through Social Human-Robot Interaction. PLoS ONE, Public Library of Science, v. 10, n. 9, p. e0138061 –, 2015. DOI: https://doi.org/10.1371/journal.pone.0138061

HANCOCK, P. A. et al. A Meta-Analysis of Factors Affecting Trust in Human- Robot Interac¬tion. Human Factors, v. 53, n. 5, p. 517 – 527, 2011. DOI: https://doi.org/10.1177/0018720811417254

INTELLIGENCE, M. ROBOTICS MARKET - GROWTH, TRENDS, COVID-19 IMPACT, AND FO¬RECASTS (2021 - 2026). 2021. Available at: https://www:mordorintelligence:com/indus¬try-reports/robotics-market. Accessado em: 17/02/2021.

KONG, K.; BAE, J.; TOMIZUKA, M. Control of Rotary Series Elastic Actuator for Ideal Force¬-Mode Actuation in Human–Robot Interaction Applications. IEEE/ASME Transactions on Mechatronics, v. 14, n. 1, p. 105 – 118, 2009. DOI: https://doi.org/10.1109/TMECH.2008.2004561

MATARIc´, M. J. The Robotics Primer. Cambridge: The MIT Press, 2007.

MUMM, J.; MUTLU, B. Human-robot proxemics: Physical and psychological distancing in human-robot interaction. HRI 2011 - Proceedings of the 6th ACM/IEEE International Conference on Human-Robot Interaction, n. May 2014, p. 331 – 338, 2011. DOI: https://doi.org/10.1145/1957656.1957786

MURPHY, R. R. Human-robot interaction in rescue robotics. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), v. 34, n. 2, p. 138 – 153, 2004. ISSN 1558-2442 VO - 34. DOI: https://doi.org/10.1109/TSMCC.2004.826267

NICOLESCU, M. N.; MATARIC´, M. J. Natural Methods for Robot Task Learning: Instructive Demonstrations, Generalization and Practice. AAMAS’03, ACM, Melbourne, JULY 2003. DOI: https://doi.org/10.1145/860575.860614

PAPANEK, V. Design for the Real World: Human Ecology and Social Change. Chicago: Chi¬cago Review Press, 1971.

PINEAU, J. et al. Towards robotic assistants in nursing homes: Challenges and results. Robo¬tics and Autonomous Systems, v. 42, n. 3-4, p. 271 – 281, 2003. DOI: https://doi.org/10.1016/S0921-8890(02)00381-0

POWERS, A. et al. Comparing a Computer Agent with a Humanoid Robot. HRI’07, ACM, Ar¬lington, March 2007. DOI: https://doi.org/10.1145/1228716.1228736

SAERBECK, M. et al. Expressive Robots in Education: Varying the Degree of Social Supportive Behavior of a Robotic Tutor. CHI 2010: Classroom Technologies, ACM, Atlanta, p. 1613 – 1622, April 2010. DOI: https://doi.org/10.1145/1753326.1753567

SAMANI, H. et al. Cultural Robotics: The Culture of Robotics and Robotics in Culture. In¬ternational Journal of Advanced Robotic Systems (Page 1). IntechOpen, v. 10, n. 400, p. 1 – 10, Feb 25/02/2013. DOI: https://doi.org/10.5772/57260

SANTIS, A. D. et al. An atlas of physical human-robot interaction. Mechanism and Machine Theory, v. 43, n. 3, p. 253 – 270, 2008. DOI: https://doi.org/10.1016/j.mechmachtheory.2007.03.003

SCHIAVI, R. et al. VSA-II: a Novel Prototype of Variable Stiffness Actuator for Safe and Per¬forming Robots Interacting with Humans. In: 2008 IEEE International Conference on Ro¬botics and Automation. [S.l.: s.n.], 2008. p. 2171 – 2176. DOI: https://doi.org/10.1109/ROBOT.2008.4543528

SIDNER, C. L. et al. Where to look: A study of human-robot engagement. IUI’04, ACM, Madei¬ra, p. 13 – 16, January 2004. DOI: https://doi.org/10.1145/964442.964458

SISBOT, E. A. et al. A Human Aware Mobile Robot Motion Planner. IEEE Transactions on Robotics, v. 23, n. 5, p. 874 – 883, 2007. DOI: https://doi.org/10.1109/TRO.2007.904911

STEINFELD, A. et al. Common metrics for human-robot interaction. HRI’06, ACM, Salt Lake City, p. 2 – 4, 2006. DOI: https://doi.org/10.1145/1121241.1121249

THRUN, S. et al. MINERVA: a second-generation museum tour-guide robot. In: Proceedings 1999 IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C). [S.l.: s.n.], 1999. v. 3, p. 1999–2005 – vol.3.

TONIETTI, G.; SCHIAVI, R.; BICCHI, A. Design and Control of a Variable Stiffness Actuator for Safe and Fast Physical Human/Robot Interaction. In: Proceedings of the 2005 IEEE Inter¬national Conference on Robotics and Automation. [S.l.: s.n.], 2005. p. 526 – 531.

VAROL, H. A.; SUP, F.; GOLDFARB*, M. Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis. IEEE Transactions on Biomedical Engineering, v. 57, n. 3, p. 542 – 551, 2010. DOI: https://doi.org/10.1109/TBME.2009.2034734

WADA, K.; SHIBATA, T. Living with seal robots - Its sociopsychological and physiological in¬fluences on the elderly at a care house. In: IEEE Transactions on Robotics. [S.l.: s.n.], 2007. v. 23, n. 5, p. 972 – 980. DOI: https://doi.org/10.1109/TRO.2007.906261

ZELANSKI, P.; FISHER, M. P. Shaping Space. 2. ed. [S.l.]: Cengage Learning, 1994. ISBN 0030765463.

Downloads

Publicado

2022-10-24

Como Citar

Caldas Bressan, M. . (2022). Uma revisão do Complexo de Funções de Design de Robôs e HRI. DAT Journal, 7(3), 189–199. https://doi.org/10.29147/datjournal.v7i3.654