Biological structures scanning in design of tactile instructional material for visually impaired people


  • Mauro Inácio Alves Junior Universidade Estadual Paulista
  • Lívia Cristina Ambrósio Universidade Estadual Paulista
  • Lígia Souza Lima Silveira da Mota Universidade Estadual Paulista
  • Fausto Orsi Medola Universidade Estadual Paulista
  • Luis Carlos Paschoarelli UNESP São Paulo State University



Assistive Design, Assistive Technology, 3D scanning , Courseware, Inclusion


Assistive Design is characterized by the development of Assistive Technologies, which promote functionality and inclusion of people with disabilities. The development of instructional material for teaching people with visual impairment can occur through the new technologies of 3D scanning and printing. This study aimed to develop tactile instructional material, based on snake biological structures. Skulls, heads, scales and tails of different species were scanned. The digital files were edited in specific software. Procedures of verification and analysis of the factors and parameters that imply in a better definition and accuracy of the virtual models were described, controlling the dimensional relation with the perception of details such as scales and anatomical format. The prototypes were obtained by 3D printing technology, allowing the analysis of factors and parameters that implied in a better accuracy of the details; besides the possibility of validation of the use interaction (effectiveness and efficiency) in educational conditions.


Download data is not yet available.

Author Biographies

Mauro Inácio Alves Junior, Universidade Estadual Paulista

Designer, Faculdade de Arquitetura, Artes, Comunicação e Design (FAAC-Unesp).

Lívia Cristina Ambrósio, Universidade Estadual Paulista

Mestre em Animais Selvagens, Faculdade de Medicina Veterinária e Zootecnia de Botucatu (FMVZ/Unesp).

Lígia Souza Lima Silveira da Mota, Universidade Estadual Paulista

Professora Associada, Instituto de Biociências de Botucatu (IBB-Unesp).

Fausto Orsi Medola, Universidade Estadual Paulista

Professor Associado, Faculdade de Arquitetura, Artes, Comunicação e Design (FAAC-Unesp).

Luis Carlos Paschoarelli, UNESP São Paulo State University

Professor Titular, Faculdade de Arquitetura, Artes, Comunicação e Design (FAAC-Unesp).


ARCAND, K. K. et al. Touching the stars: improving NASA 3D printed data sets with blind andvisually impaired audiences. Journal of Science Communication, Trieste, v. 18, n. 4, p. 1-22, 2019. Disponível em: Acesso em: 4 abr. 2022 DOI: 10.22323/2.18040201 DOI:

ARES, M., ROYO, S., VIDAL, J., CAMPDERRÓS, L., PANYELLA, D., PÉREZ, F., GONZÁLEZ BALLESTER, M. A. 3D Scanning System for In-Vivo Imaging of Human Body. In: Osten, W. (eds) Fringe 2013. Springer, Berlin, Heidelberg, p.899-902. 2014. DOI: 10.1007/978-3-642-36359-7_168 DOI:

BRASIL. [Constituição (1988)]. Constituição da República Federativa do Brasil. Brasília, DF: Palácio do Planalto, 1988. Disponível em: Acesso em: 20 março 2023.

BRULÉ, E. et al. MapSense: multi-sensory interactive maps for children living with visual impairments. In: CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS, may 2016, San José, California, USA. Proceedings [...]. New York: Association for Computing Machinery, 2016. DOI: 10.1145/2858036.2858375 DOI:

D´APUZZO, N. State of the art of the methods for static 3D scanning of partial or full human body. Proceedings of Conference 3D Modelling. Paris. June 13-14. 2006.

DEZEN-KEMPTER, E.; SOIBELMAN, L.; CHEN, M.; MÜLLER FILHO, A. V. Escaneamento 3D a laser, fotogrametria e modelagem da informação da construção para gestão e operação de edificações históricas. Gestão & Tecnologia de Projetos, v. 10, p. 113-168, 2015. DOI:

DIGITAL LIFE. Digital Life: creating accurate 3d models of life on earth. In: Acessado em: 26 mai. 2022.

HALEEM, A., & JAVAID, M. 3D scanning applications in medical field: A literature-based review. Clinical Epidemiology and Global Health. 2018. DOI:10.1016/j.cegh.2018.05.006 DOI:

HU, P., LI, D., WU, G., KOMURA, T., ZHANG, D., ZHONG, Y. Personalized 3D mannequin reconstruction based on 3D scanning. International Journal of Clothing Science and Technology, 30(2), 159–174. 2018. DOI: 10.1108/ijcst-05-2017-0067. DOI:

KUS, A.; UNVER, E.; TAYLOR, A. A comparative study of 3D scanning in engineering, product and transport design and fashion design education. Computer Applications in Engineering Education, 17, 263-271. 2009. DOI: DOI:

POKHARNA, P.P.; GHANTASALA, M.K.; ROSHKOVA, E.A. 3D printed polylactic acid and acrylonitrile butadiene styrene fluidic structures for biological applications: Tailoring bio-material interface via surface modification. Materials Today Communications, 27 , 102348, 2021. DOI: DOI:

REYNAGA-PEÑA, C. G. A microscopic world at the touch: learning biology with novel 2.5d and 3d tactile models. Journal of Blindness Innovation and Research, Mexico, v.1, n. 5, p. 1-8, 2015. DOI: 10.5241/5-54. DOI:

TRELEAVEN, P., & WELLS, J. 3D Body Scanning and Healthcare Applications. Computer, 40(7), 28-34. 2007. DOI:10.1109/mc.2007.225. DOI:

ZUFFI, S.; KANAZAWA, A.; JACOBS, D.W.; BLACK, M.J. 3D Menagerie: Modeling the 3D shape and pose of animals. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), p. 5524-5532, 2017. DOI: 10.1109/CVPR.2017.586 DOI:



How to Cite

Alves Junior, M. I., Ambrósio, L. C., Mota, L. S. L. S. da, Medola, F. O., & Paschoarelli, L. C. (2023). Biological structures scanning in design of tactile instructional material for visually impaired people. DAT Journal, 8(4), 100–123.



Design, Art and Technology